Robust fitting of mixture regression models

نویسندگان

  • Xiuqin Bai
  • Weixin Yao
  • John E. Boyer
چکیده

The existing methods for fitting mixture regression models assume a normal distribution for error and then estimate the regression parameters by the maximum likelihood estimate (MLE). In this article, we demonstrate that the MLE, like the least squares estimate, is sensitive to outliers and heavy-tailed error distributions. We propose a robust estimation procedure and an EM-type algorithm to estimate the mixture regression models. Using a Monte Carlo simulation study, we demonstrate that the proposed new estimation method is robust and works much better than the MLE when there are outliers or the error distribution has heavy tails. In addition, the proposed robust method works comparably to the MLE when there are no outliers and the error is normal. A real data application is used to illustrate the success of the proposed robust estimation procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Unsupervised learning of regression mixture models with unknown number of components

Regression mixture models are widely studied in statistics, machine learning and data analysis. Fitting regression mixtures is challenging and is usually performed by maximum likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the initialization is crucial for EM. If the initialization is inappropriately performed, the EM algorithm may lead to unsatis...

متن کامل

tlemix: A General Framework for Robust Fitting of Finite Mixture Models in R

tlemix implements a general framework for robustly fitting discrete mixtures of regression models in the R statistical computing environment. It implements the FAST-TLE algorithm and uses the R package FlexMix as a computational engine for fitting mixtures of general linear models (GLMs) and model-based clustering in R.

متن کامل

Robust mixture regression model fitting by Laplace distribution

A robust estimation procedure for mixture linear regression models is proposed by assuming that the error terms follow a Laplace distribution. The estimation procedure is implemented by an EM algorithm based on the fact that the Laplace distribution is a scale mixture of a normal distribution. Finite sample performance of the proposed algorithm is evaluated by numerical simulation studies. The ...

متن کامل

Bayesian Curve Fitting Using Multivariate Normal Mixtures

Problems of regression smoothing and curve fitting are addressed via predictive inference in a flexible class of mixture models. Multidimensional density estimation using Dirichlet mixture models provides the theoretical basis for semi-parametric regression methods in which fitted regression functions may be deduced as means of conditional predictive distributions. These Bayesian regression fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012